9号彩票开户

关注微信  |  微博  |  腾讯微博  |  RSS订阅
读者QQ群③:168129342,投稿请发dashuju36@qq.com
我要投稿

微软开源用于Spark的深度学习库MMLSpark

大数据

作者:Beining

微软开源了MMLSpark,用于Apache Spark的的深度学习库。MMLSpark可以与微软认知工具包和OpenCV完美整合。

微软发现,虽然SparkML可以建立可扩展的机器学习平台,绝大多数开发者的精力都耗在了调用底层API上。MMLSpark旨在简化PySpark中的重复性工作。

以UCI的成人收入普查数据集举例,使用其他项目预测收入:

大数据

如果直接使用SparkML,每一列都需要单独处理,整理为正确的数据类型;在MMLSpark中只需要两行代码:

model = mmlspark.TrainClassifier(model=LogisticRegression(), labelCol=” income”).fit(trainData)
predictions = model.transform(testData)

深度神经网络(DNN)在图像识别和语音识别等领域不逊于人类,但是DNN模型的训练需要专业人员方可进行,与SparkML的整合也十分不易。MMLSpark提供了方便的Python API,可以方便地训练DNN算法。MMLSpark可以方便地使用现有模型进行分类任务、在分布式GPU节点上进行训练、以及使用OpenCV建立可扩展的图像处理管线。

以下3行代码可以从微软认知工具集中初始化一个DNN模型,从图像中抽取特征:

cntkModel = CNTKModel().setInputCol(“images”).setOutputCol(“features”).setModelLocation(resnetModel).setOutputNode(“z.x”)
featurizedImages = cntkModel.transform(imagesWithLabels).select([‘labels’,’features’])
model = TrainClassifier(model=LogisticRegression(),labelCol=”labels”).fit(featurizedImages)

MMLSpark已经发布到Docker Hub上,使用下面的命令即可在单机部署:

docker run -it -p 8888:8888 -e ACCEPT_EULA=yes microsoft/mmlspark

MMLSpark使用MIT协议授权。

End.

转载请注明来自36大数据(36dsj.com):36大数据 » 微软开源用于Spark的深度学习库MMLSpark

36大数据   除非特别注明,本站所有文章均不代表本站观点。报道中出现的商标属于其合法持有人。请遵守理性,宽容,换位思考的原则。

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
友情链接:幸运农场  幸运农场代理  金彩彩票  快赢彩票  北京赛车pk拾官方开奖  

免责声明: 本站资料及图片来源互联网文章,本网不承担任何由内容信息所引起的争议和法律责任。所有作品版权归原创作者所有,与本站立场无关,如用户分享不慎侵犯了您的权益,请联系我们告知,我们将做删除处理!