9号彩票开户

关注微信  |  微博  |  腾讯微博  |  RSS订阅
读者QQ群③:168129342,投稿请发dashuju36@qq.com
我要投稿

基于Python的Grib数据可视化

大数据

作者:kallan

利用Python语言实现Grib数据可视化主要依靠三个库——pygrib、numpy和matplotlib。pygrib是欧洲中期天气预报中心(ECMWF)的GRIG API C库的Python接口,通过这个库可以将Grib数据读取出来;numpy是Python的一种开源的数值计算扩展,这种工具可用来存储和处理大型矩阵;matplotlib是python著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图;在数据可视化过程中,我们常需要将数据在地图上画出来,所以还需要matplotlib的一个子包basemap,负责地图绘制。

一、库的安装

(一)matplotlib安装

  • matplotlib依赖
    1. nose
    2. numpy
    3. pyparsing
    4. python-dateutil
    5. cycler
    6. pkg-config
    7. freetype
    8. libpng
  • 安装过程

这里我都是通过源码包安装的,大家也可以再终端里通过pip install 命令来安装

1、安装nose

解压缩后,进入命令提示符 运行

1 python3 setup.py install

2、安装numpy

解压缩后,进入命令提示符 运行

1 python3 setup.py install

3、安装pyparsing

解压缩后,进入命令提示符 运行

1 python3 setup.py install

4、安装python-dateutil

解压缩后,进入命令提示符 运行

1 python3 setup.py install

5、安装cycler

解压缩后,进入命令提示符 运行

1 python3 setup.py install

6、安装pkg-config

1 ./configure --with-intermal-glib
2 make && date
3 sudo make install && date

7、安装freetype

1  ./configure
2  make && date
3  sudo make install && date

8、安装libpng

1  ./configure
2  make && date
3  sudo make install && date

9、安装matplotlib-1.5.0

解压缩后,进入命令提示符 运行

1 python3 setup.py install

(二)basemap安装

  • basemap依赖
    1. geos
    2. pyproj
  • 安装过程

1、安装GEOS

1  ./configure
2  make && date
3  sudo make install && date

2、安装pyproj

1 python3 setup.py install

3、安装basemap

1 python3 setup.py install

(三)pygrib安装

  • pygrib依赖
    1. Jasper
    2. GRIB API
    3. numpy
    4. pyproj
  • 安装过程

由于之前已经安装了numpy和pyproj,这里只需安装Jasper和GRIB API即可安装pygrib

1、安装Jasper

1 ./configure
2 make && date
3 sudo make install && date

2、安装GRIB API

1 ./configure --with-jasper='/usr/local/'
2 make && date
3 sudo make install && date

3、安装pygrib

安装pygrib之前首先要根据自己的实际情况修改文件目录下的setup.cfg文件,最主要的就是修改grib_api_dir和jasper_dir,这两个是刚刚安装的Jasper和GRIB API的路径,如果这两个地址不正确安装会报错

修改好就可以正常安装了

1 python3 setup.py install

二、grib数据读取

虽然我做的东西和气象沾边,但是我本身并不是气象专业出身,所有这些东西都是我慢慢研究琢磨出来的,所以有些方面可能讲的比较外行,有不对的地方欢迎大家留言指正。

(一)导入pygrib模块

1 >>> import pygrib

(二)打开Grib文件

1 >>> grbs = pygrib.open('/Users/Kallan/Documents/data/echhae50.082')

(三)提取文件信息

1 >>> grbs.seek(0)
2 >>> for grb in grbs:
3 grb
4 1:Geopotential Height:gpm (instant):regular_ll:isobaricInhPa:level 500:fcst time 24 :from 201507081200

信息解读

1:数据列表的行号,有的文件可能包括多个数据

GeopotentialHeight:数据的名称

gpm(instant):数据的单位

regular_ll:常规数据,其实这个字段我也不清楚

isobaricInhPa:这个字段表示的是数据属性,此处表示是以hPa为单位的等压面

level500:这个字段表示的是高度层

fcst time24:预报时效

from201507081200 :起报时间

综合上面的信息可以得出,这个文件是从2015年7月8日12时开始的24小时后500hPa等压面高度场数据

(四)导出文件数据

 1 >>> grb = grbs.select(name='Geopotential Height')[0]
 2 >>> data = grb.values
 3 >>> print(data.shape,data.min(),data.max())
 4 (37, 37) 5368.6796875 5941.0390625
 5 >>> lat,lon=grb.latlons()
 6 >>> print(lat,'\n',lon)
 7 [[  0.    0.    0.  ...,   0.    0.    0. ]
 8 [  2.5   2.5   2.5 ...,   2.5   2.5   2.5]
 9 [  5.    5.    5.  ...,   5.    5.    5. ]
10 ...,
11 [ 85.   85.   85.  ...,  85.   85.   85. ]
12 [ 87.5  87.5  87.5 ...,  87.5  87.5  87.5]
13 [ 90.   90.   90.  ...,  90.   90.   90. ]]
14 [[-90.  -87.5 -85.  ...,  -5.   -2.5   0. ]
15 [-90.  -87.5 -85.  ...,  -5.   -2.5   0. ]
16 [-90.  -87.5 -85.  ...,  -5.   -2.5   0. ]
17 ...,
18 [-90.  -87.5 -85.  ...,  -5.   -2.5   0. ]
19 [-90.  -87.5 -85.  ...,  -5.   -2.5   0. ]
20 [-90.  -87.5 -85.  ...,  -5.   -2.5   0. ]]

三、grib数据可视化

(一)导入需要的模块

1 >>> import matplotlib.pyplot as plt
2 >>> from mpl_toolkits.basemap import Basemap
3 >>> import numpy as np

(二)创建一个figure

1 >>> plt.figure()
2 <matplotlib.figure.Figure object at 0x107e65198>

(三)创建一个basemap实例

 1 >>> m=Basemap(projection='mill',lat_ts=10,llcrnrlon=lon.min(), \
 2  urcrnrlon=lon.max(),llcrnrlat=lat.min(),urcrnrlat=lat.max(), \
 3  resolution='c')
 4 >>> m.drawcoastlines(linewidth=0.25)
 5 <matplotlib.collections.LineCollection object at 0x1091c1f28>
 6 >>> m.drawcountries(linewidth=0.25)
 7 <matplotlib.collections.LineCollection object at 0x10621d0f0>
 8 >>> m.fillcontinents(color='coral',lake_color='aqua')
 9 >>> m.drawmapboundary(fill_color='aqua')
10 <matplotlib.patches.Rectangle object at 0x10918b3c8>
11 >>> m.drawmeridians(np.arange(0,360,30))
12 >>> m.drawparallels(np.arange(-90,90,30))

(四)将lat,lon的数据格式转换成投影需要的格式存入x,y

1 >>> x, y = m(lon,lat)

(五)绘制等值线

1 >>> cs = m.contour(x,y,data,15,linewidths=1.5)

(六)命名并显示图像

1 >>> plt.title('Geopotential Height Contour from Grib')
2 <matplotlib.text.Text object at 0x10918bda0>
3 >>> plt.show()

(七)图像展示

End.

转载请注明来自36大数据(36dsj.com):36大数据 » 基于Python的Grib数据可视化

36大数据   除非特别注明,本站所有文章均不代表本站观点。报道中出现的商标属于其合法持有人。请遵守理性,宽容,换位思考的原则。

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
友情链接:98彩票  幸运农场  9号彩票官网  金凤凰彩票  幸运农场开户  

免责声明: 本站资料及图片来源互联网文章,本网不承担任何由内容信息所引起的争议和法律责任。所有作品版权归原创作者所有,与本站立场无关,如用户分享不慎侵犯了您的权益,请联系我们告知,我们将做删除处理!